Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803075

RESUMO

Methamphetamine is, worldwide, one of the most consumed drugs of abuse. One important side effect is neurodegeneration leading to a decrease in life expectancy. The aim of this paper was to check whether the drug affects one of the receptors involved in neurodegeneration/neuroprotection events, namely the adenosine A2A receptor (A2AR). First, we noticed that methamphetamine does not affect A2A functionality if the receptor is expressed in a heterologous system. However, A2AR becomes sensitive to the drug upon complexes formation with the cannabinoid CB1 receptor (CB1R) and the sigma 1 receptor (σ1R). Signaling via both adenosine A2AR and cannabinoid CB1R was affected by methamphetamine in cells co-expressing the two receptors. In striatal primary cultures, the A2AR-CB1R heteromer complex was detected and methamphetamine not only altered its expression but completely blocked the A2AR- and the CB1R-mediated activation of the mitogen activated protein kinase (MAPK) pathway. In conclusion, methamphetamine, with the participation of σ1R, alters the expression and function of two interacting receptors, A2AR, which is a therapeutic target for neuroprotection, and CB1R, which is the most abundant G protein-coupled receptor (GPCR) in the brain.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Corpo Estriado/metabolismo , Metanfetamina/farmacologia , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores sigma/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Receptor Sigma-1
2.
Addict Biol ; 26(5): e13017, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559278

RESUMO

Cocaine not only increases brain dopamine levels but also activates the sigma1 receptor (σ1 R) that in turn regulates orexigenic receptor function. Identification of interactions involving dopamine D1 (D1 R), ghrelin (GHS-R1a ), and σ1 receptors have been addressed by biophysical techniques and a complementation approach using interfering peptides. The effect of cocaine on receptor functionality was assayed by measuring second messenger, cAMP and Ca2+ , levels. The effect of acute or chronic cocaine administration on receptor complex expression was assayed by in situ proximity ligation assay. In silico procedures were used for molecular model building. σ1 R KO mice were used for confirming involvement of this receptor. Upon identification of protomer interaction and receptor functionality, a unique structural model for the macromolecular complex formed by σ1 R, D1 R, and GHS-R1a is proposed. The functionality of the complex, able to couple to both Gs and Gq proteins, is affected by cocaine binding to the σ1 R, as confirmed using samples from σ1 R-/- mice. The expression of the macromolecular complex was differentially affected upon acute and chronic cocaine administration to rats. The constructed 3D model is consistent with biochemical, biophysical, and available structural data. The σ1 R, D1 R, and GHS-R1a complex constitutes a functional unit that is altered upon cocaine binding to the σ1 R. Remarkably, the heteromer can simultaneously couple to two G proteins, thus allowing dopamine to signal via Ca2+ and ghrelin via cAMP. The anorexic action of cocaine is mediated by such complex whose expression is higher after acute than after chronic administration regimens.


Assuntos
Cocaína/farmacologia , Fome/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Ratos , Receptores de Dopamina D1/metabolismo , Receptores de Grelina/metabolismo , Receptores sigma , Receptor Sigma-1
3.
Pharmacol Res ; 158: 104801, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32416215

RESUMO

While natural Δ9-tetrahidrocannabinol (Δ9THC), cannabidiol (CBD), and their therapeutic potential have been extensively researched, some cannabinoids have been less extensively investigated. The present article compiles data from the literature that highlight the health benefits and therapeutic potential of lesser known phytocannabinoids, which we have divided into varinic, acidic, and "minor" (i.e., cannabinoids that are not present in high quantities in common varieties of Cannabis sativa L). A growing interest in these compounds, which are enriched in some cannabis varieties, has already resulted in enough preclinical information to show that they are promising therapeutic agents for a variety of diseases. Every phytocannabinoid has a "preferential" mechanism of action, and often targets the cannabinoid receptors, CB1 and/or CB2. The recent resolution of the structure of cannabinoid receptors demonstrates the atypical nature of cannabinoid binding, and that different binding modes depend on the agonist or partial agonist/inverse agonist, which allows for differential signaling, even acting on the same cannabinoid receptor. In addition, other players and multiple signaling pathways may be targeted/engaged by phytocannabinoids, thereby expanding the mechanistic possibilities for therapeutic use.

4.
Cells ; 9(5)2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357548

RESUMO

(1) Background. N-methyl d-aspartate (NMDA) ionotropic glutamate receptor (NMDAR), which is one of the main targets to combat Alzheimer's disease (AD), is expressed in both neurons and glial cells. The aim of this paper was to assess whether the adenosine A2A receptor (A2AR), which is a target in neurodegeneration, may affect NMDAR functionality. (2) Methods. Immuno-histo/cytochemical, biophysical, biochemical and signaling assays were performed in a heterologous cell expression system and in primary cultures of neurons and microglia (resting and activated) from control and the APPSw,Ind transgenic mice. (3) Results. On the one hand, NMDA and A2A receptors were able to physically interact forming complexes, mainly in microglia. Furthermore, the amount of complexes was markedly enhanced in activated microglia. On the other hand, the interaction resulted in a novel functional entity that displayed a cross-antagonism, that could be useful to prevent the exacerbation of NMDAR function by using A2AR antagonists. Interestingly, the amount of complexes was markedly higher in the hippocampal cells from the APPSw,Ind than from the control mice. In neurons, the number of complexes was lesser, probably due to NMDAR not interacting with the A2AR. However, the activation of the A2AR receptors resulted in higher NMDAR functionality in neurons, probably by indirect mechanisms. (4) Conclusions. A2AR antagonists such as istradefylline, which is already approved for Parkinson's disease (Nouriast® in Japan and Nourianz® in the US), have potential to afford neuroprotection in AD in a synergistic-like fashion. i.e., via both neurons and microglia.


Assuntos
Antagonistas do Receptor A2 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Animais , Ácido Glutâmico/metabolismo , Células HEK293 , Hipocampo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Neuroglia/metabolismo , Neurônios/metabolismo , Neuroproteção , Cultura Primária de Células , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transdução de Sinais
5.
J Mol Endocrinol ; 63(4): R81-R92, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539876

RESUMO

Addiction and eating disorders involve brain reward circuits. Binge eating predisposes to addictive behavior, while the cessation of exposure to drugs of abuse leads to reward activities, including intake of tasty foods. Cocaine use is associated with a decrease in food intake, with reversal after drug use is discontinued. Exciting new findings show that receptors for the 'hunger' hormone, ghrelin, directly interact with the sigma-1 receptor (σ1R), which is a target of cocaine. σ1Rs are key players in regulating dopaminergic neurotransmission and ghrelin-mediated actions. This review focuses on the σ1 receptor as a general neuroendocrine regulator by directly interacting with neuronal G-protein-coupled receptors. This review also covers the early mechanisms by which cocaine binding to σ1 blocks the food-seeking behavior triggered by ghrelin. Those findings appear as fundamental to understand common mechanisms in drug addiction and eating disorders.


Assuntos
Apetite/genética , Transtornos Relacionados ao Uso de Cocaína/etiologia , Receptores sigma/genética , Animais , Cálcio/metabolismo , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Comportamento Alimentar , Humanos , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Grelina/metabolismo , Receptores sigma/metabolismo , Recompensa , Transdução de Sinais , Receptor Sigma-1
6.
Mol Neurobiol ; 56(2): 1196-1210, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29876881

RESUMO

Despite ancient knowledge on cocaine appetite-suppressant action, the molecular basis of such fact remains unknown. Addiction/eating disorders (e.g., binge eating, anorexia, bulimia) share a central control involving reward circuits. However, we here show that the sigma-1 receptor (σ1R) mediates cocaine anorectic effects by interacting in neurons with growth/hormone/secretagogue (ghrelin) receptors. Cocaine increases colocalization of σ1R and GHS-R1a at the cell surface. Moreover, in transfected HEK-293T and neuroblastoma SH-SY5Y cells, and in primary neuronal cultures, pretreatment with cocaine or a σ1R agonist inhibited ghrelin-mediated signaling, in a similar manner as the GHS-R1a antagonist YIL-781. Results were similar in G protein-dependent (cAMP accumulation and calcium release) and in partly dependent or independent (ERK1/2 phosphorylation and label-free) assays. We provide solid evidence for direct interaction between receptors and the functional consequences, as well as a reliable structural model of the macromolecular σ1R-GHS-R1a complex, which arises as a key piece in the puzzle of the events linking cocaine consumption and appetitive/consummatory behaviors.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Grelina/metabolismo , Neurônios/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Receptores sigma/metabolismo , Saponinas/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Neurônios/citologia , Neurônios/metabolismo , Ácido Oleanólico/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor Sigma-1
7.
Neuropharmacology ; 152: 102-111, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465812

RESUMO

Stress is one of the factors underlying drug seeking behavior that often goes in parallel with loss of appetite. We here demonstrate that orexin 1 receptors (OX1R) may form complexes with the corticotropin releasing factor CRF2 receptor. Two specific features of the heteromer were a cross-antagonism and a blockade by CRF2 of OX1R signaling. In cells expressing one of the receptors, agonist-mediated signal transduction mechanisms were potentiated by amphetamine. Sigma 1 (σ1) and 2 (σ2) receptors are targets of drugs of abuse and, despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is not known. We here show that σ1 receptors interact with CRF2 receptors and that σ2 receptors interact with OX1R. Moreover, we show that amphetamine effect on CRF2 receptors was mediated by σ1R whereas the effect on OX1 receptors was mediated by σ2R. Amphetamine did potentiate the negative cross-talk occurring within the CRF2-OX1 receptor heteromer context, likely by a macromolecular complex involving the two sigma receptors and the two GPCRs. Finally, in vivo microdialysis experiments showed that amphetamine potentiated orexin A-induced dopamine and glutamate release in the ventral tegmental area (VTA). Remarkably, the in vivo orexin A effects were blocked by a selective CRF2R antagonist. These results show that amphetamine impacts on the OX1R-, CRF2R- and OX1R/CRF2R-mediated signaling and that cross-antagonism is instrumental for in vivo detection of GPCR heteromers. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Assuntos
Anfetamina/farmacologia , Receptores de Orexina/metabolismo , Receptor Cross-Talk/fisiologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Masculino , Receptores de Orexina/fisiologia , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Transdução de Sinais
8.
Sci Total Environ ; 626: 1270-1283, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898535

RESUMO

The implementation of the Ecosystem Services (ES) framework (including supply and demand) should be based on accurate spatial assessments to make it useful for land planning or environmental management. Despite the inherent dependence of ES assessments on the spatial resolution at which they are conducted, the studies analyzing these effects on ES supply and their relationships are still scarce. To study the influence of the spatial level of analysis on ES patterns and on the relationships among different ES, we selected seven indicators representing ES supply and three variables that describe forest cover and biodiversity for Catalonia (NE Iberian Peninsula). These indicators were estimated at three different scales: local, municipality and county. Our results showed differences in the ES patterns among the levels of analysis. The higher levels (municipality/county) removed part of the local heterogeneity of the patterns observed at the local scale, particularly for ES indicators characterized by a finely grained, scattered distribution. The relationships between ES indicators were generally similar at the three levels. However, some negative relationships (potential trade-offs) that were detected at the local level changed to positive (and significant) relationships at municipality and county. Spatial autocorrelation showed similarities between patterns at local and municipality levels, but differences with county level. We conclude that the use of high-resolution spatial data is preferable whenever available, in particular when identifying hotspots or trade-offs/synergies is of primary interest. When the main objective is describing broad patterns of ES, intermediate levels (e.g., municipality) are also adequate, as they conserve many of the properties of assessments conducted at finer scales, allowing the integration of data sources and, usually, being more directly relevant for policy-making. In conclusion, our results warn against the uncritical use of coarse (aggregated) spatial ES data and indicators in strategies for land use planning and forest conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...